
Download free eBooks at bookboon.com

Perl for Beginners

32

Flow of control: loops

8 Flow of control: loops

Sometimes we want to repeat an action, perhaps with variations. One way to do this is with the word for.
Suppose we want to print out a hundred lines containing the messages:

Next number is 1
Next number is 2

⋮
Next number is 100

Here is a code snippet which does that:

for ($i = 1; $i <= 100; ++$i)
 {
 print "Next number is $i\n";
 }

The brackets following for contain: a variable created for the purpose of this for loop and given an
initial value; a condition for repeating the loop; and an action to be executed after each pass. The variable
$i begins with the value 1, ++$i increments it by one on each pass, and the instruction within the
curly brackets is executed for each value of $i until $i reaches 101, when control moves on to
whatever follows the closing curly bracket.

We saw earlier that, within double quotation marks, a symbol like \n is translated into what it stands for
(newline, in this case), rather than being taken literally as the two characters \ followed by n. Similarly,
a variable name such as $i is translated into its current value; the lines displayed by the code above read
e.g. Next number is 3, not Next number is $i. If you really wanted the latter, you would
need to “escape” the dollar sign:

print "Next number is \$i\n";

The little examples in earlier chapters often ended with statements such as

print $a;

In practice, it would usually be far preferable to write

print "$a\n";

so that the result appears on a line of its own, rather than jammed together with the next system prompt.

Within the output of the above code snippet, 1 is not a “next” number but the first number. So we might
want the message on the first line to read differently. By now, we know various ways to achieve that. Here
are two – a straightforward, plodding way, and a more concise way:

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

33

Flow of control: loops

(5)

1 for ($i = 1; $i <= 100; ++$i)
2 {
3 if ($i == 1)
4 {
5 print "First number is $i\n";
6 }
7 else
8 {
9 print "Next number is $i\n";
10 }
11 }

or (quicker to type, though less clear when you come back to it weeks later):

(6)

1 for ($i = 1; $i <= 100; ++$i)
2 {
3 $a = ($i == 1 ? "First" : "Next");
4 print "$a number is $i\n";
5 }

Another way to set up a repeating loop is the while construction. Here is another code snippet which
achieves the same as the two we have just looked at:

(7)

1 $i = 1;
2 print "First number is $i\n";
3 while ($i < 100)
4 {
5 ++$i;
6 print "Next number is $i\n";
7 }

Here, $i is incremented within the loop body, and control falls out of the loop after the pass in which
$i begins with the value 99. The while condition reads $i < 100, not $i <= 100: within the
curly brackets, $i is incremented before its value is displayed, so if <= had been used in the while
line, the lines displayed would have reached 101.

The while construction is often used for reading input lines in from a text file, so the next chapter will
show us how that is done.

http://bookboon.com/

